EECS 562 Homework #9

- 1. A BPSK system needs to transmit 1.5Mbit/sec and provide a 10^{-5} BER. Let N₀=-110 dB_w/Hz. The path loss is 67dB.
 - a. Find the required RF transmission bandwidth, B_{RF} ; assume Raised-Cosine pulse shape with a roll off factor α of 1.
 - b. Find the required transmitter power.
- 2. Explore the system trade-off between spectral efficiency and required RF transmission bandwidth for M-QAM. In this case let N_0 =-110 dB_W/Hz and assume a required bit rate of 1.5Mbit/sec and Raised-Cosine pulse shape with a roll off factor α of 1.
 - a. To provide a 10^{-2} BER find the required E_b and RF transmission bandwidth, B_{RF} , for QPSK, and 64-QAM
 - b. To provide a $10^{\text{-3}}$ BER find the required E_b and RF transmission bandwidth, $B_{\text{RF},}\,$ for QPSK and 64-QAM
 - c. To provide a $10^{\text{-4}}$ BER find the required E_b and RF transmission bandwidth, $B_{\text{RF},}\,$ for QPSK and 64-QAM

That is, fill out the table below and comment on the BER, required E_b and required RF transmission bandwidth trade-offs; specifically discuss the trade-off with respect the spectral efficiency defined as the $S_{eff}=r_b/B_{RF}$ (bits/sec)/Hz).

Use the theoretical BER performance for M-QAM assuming Gray coding given below and at <u>http://www.ittc.ku.edu/~frost/EECS_562/QAM_Theoretical_BER.jpeg</u> (4-QAM=QPSK)

Modulation	BER	E _b	B _{RF}	Seff
				(bits/sec)/Hz
QPSK	10-2			
QPSK	10-3			
QPSK	10-4			
64-QAM	10-2			
64-QAM	10-3			
64-QAM	10-4			

- Your company is assigned 1900 to 1920MHz. Explain how you would use this spectrum if

 FDD is used
 - b. TDD is used.
- 4. Explain how OFDM helps mitigates multipath fading effects.
- 5. What is a cyclic prefix and why is it used and what is its cost?
- 6. What is used in LTE for synchronization?
- 7. In LTE the OFDM symbol time, T=1/15000 sec = $1/\Delta f$; Δf =15kHz. Here each subcarrier transmits 16-QAM.

Bits 1101 so $s_1(t) = 1\cos(2\pi(f_c + \Delta f)t) + 1\sin(2\pi(f_c + \Delta f)t)$ for 0 < t < TBits 0001 so $s_2(t) = -3\cos(2\pi(f_c + 2\Delta f)t) + 1\sin(2\pi(f_c + 2\Delta f)t)$ for 0 < t < T $s(t) = s_1(t) + s_2(t)$ for 0 < t < T

Assume the carrier frequency, $f_c = 900$ Mhz. Here s(t) is transmitted using two adjacent subcarriers at $f_c + \Delta f$ and $f_c + 2\Delta f$. During one OFDM symbol time, T, the RF signal, s(t), is transmitted.

- a. What is the bit rate of s(t) in b/s.
- b. Show that $s_1(t)$ and $s_2(t)$ are orthogonal over 0<t<T.
- c. Sketch a receiver structure for $s_2(t)$, what is the receiver output?

- 8. When an LTE operator uses a 20 MHz channel bandwidth in the downlink there are 1200 occupied subcarriers. In LTE the OFDM symbol time, T=1/15000 sec with a subcarrier separation of 15kHz.
 - a. If all 1200 subcarriers use 8-QAM what is the total bit rate of in b/s.
 - b. If all 1200 subcarriers use 16-QAM what is the total bit rate of in b/s.